Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter.
نویسندگان
چکیده
We review the photosynthetic responses to drought in field-grown grapevines and other species. As in other plant species, the relationship between photosynthesis and leaf water potential and/or relative water content in field-grown grapevines depends on conditions during plant growth and measurements. However, when light-saturated stomatal conductance was used as the reference parameter to reflect drought intensity, a common response pattern was observed that was much less dependent on the species and conditions. Many photosynthetic parameters (e.g. electron transport rate, carboxylation efficiency, intrinsic water-use efficiency, respiration rate in the light, etc.) were also more strongly correlated with stomatal conductance than with water status itself. Moreover, steady-state chlorophyll fluorescence also showed a high dependency on stomatal conductance. This is discussed in terms of an integrated down-regulation of the whole photosynthetic process by CO2 availability in the mesophyll. A study with six Mediterranean shrubs revealed that, in spite of some marked interspecific differences, all followed the same pattern of dependence of photosynthetic processes on stomatal conductance, and this pattern was quite similar to that of grapevines. Further analysis of the available literature suggests that the above-mentioned pattern is general for C3 plants. Even though the patterns described do not necessarily imply a cause and effect relationship, they can help our understanding of the apparent contradictions concerning stomatal vs. non-stomatal limitations to photosynthesis under drought. The significance of these findings for the improvement of water-use efficiency of crops is discussed.
منابع مشابه
Genotypically Identifying Wheat Mesophyll Conductance Regulation under Progressive Drought Stress
Photosynthesis limitation by CO2 flow constraints from sub-stomatal cavities to carboxylation sites in chloroplasts under drought stress conditions is, at least in some plant species or crops not fully understood, yet. Leaf mesophyll conductance for CO2 (gm) may considerably affect both photosynthesis and water use efficiency (WUE) in plants under drought conditions. The aim of our study was to...
متن کاملDiurnal Variations of Gas Exchange Characteristics in Leaves of Anise Hyssop (Agastache foeniculum) under Normal, Drought Stress and Recovery Conditions
Net photosynthesis rate (Pn), stomatal conductance (gs) and transpiration rate (E) of anise hyssop were measured during the four cloudless days, in reference to diurnal fluctuations of leaf temperature (Tleaf), leaf vapor pressure deficit (VPD leaf) and photosynthetic photon flux density (PPFD) in well watered (WW), stressed (S) and recovered (R) plants. An analysis of measured data showed tha...
متن کاملDrought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited.
There is a long-standing controversy as to whether drought limits photosynthetic CO2 assimilation through stomatal closure or by metabolic impairment in C3 plants. Comparing results from different studies is difficult due to interspecific differences in the response of photosynthesis to leaf water potential and/or relative water content (RWC), the most commonly used parameters to assess the sev...
متن کاملStomatal Movement in Response to Root Zone Temperature in Purple Heart (Tradescantia pallida)
The effects of root temperatures (25, 35 and 45°C) and temperature duration (30, 60 and 90 min) on net photosynthesis rate, stomatal conductance and transpiration rate in Tradescantia pallida were investigated. The experiment was conducted under controlled conditions with factorial arrangement based on a completely randomized design (CRD) and four replications. Result showed that, net photosynt...
متن کاملPhysiological advantages of C4 grasses in the field: a comparative experiment demonstrating the importance of drought
Global climate change is expected to shift regional rainfall patterns, influencing species distributions where they depend on water availability. Comparative studies have demonstrated that C4 grasses inhabit drier habitats than C3 relatives, but that both C3 and C4 photosynthesis are susceptible to drought. However, C4 plants may show advantages in hydraulic performance in dry environments. We ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals of botany
دوره 89 Spec No شماره
صفحات -
تاریخ انتشار 2002